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Background

Many tumour cells have lost the ability to undergo apoptosis in response to
DNA damage caused either by irradiation or chemical mutagens. This appears
to be one of the key reasons that so many tumours are resistant to treatment by
either radio- or chemotherapy. Understanding how apoptosis is regulated in
normal cells may shed light on the mutations that render tumour cells resistant
to apoptotic stimuli and may thus suggest novel therapeutic strategies. The key
focus of this project is to understand how a particular conserved family of
regulators of apoptosis, the Inhibitor of Apoptosis Proteins (IAPs), suppresses
cell death.

IAPs suppress apoptosis both in the fruit fly Drosophila melanogaster and in
vertebrates. All IAPs contain at least a single copy of a highly conserved domain,
the Baculovirus IAP Repeat (BIR) domain; this is essential for their anti-apoptotic
activity. Understanding how a BIR domain regulates apoptosis is thus an
important step in furthering our understanding of the molecular mechanisms of

apoptosis.

The nematode worm C. elegans has been a key tool for research into apoptosis
since the inception of the field. Genetic analysis of programmed cell death in C.
elegans led to the identification of the basal machinery of cell death which is
conserved between worms and humans. Analysis of the function of IAPs in C.
elegans might shed light on the function of IAPs in human cells. I have
previously identified two BIR-containing Proteins (BIRPs) in the nematode worm
C. elegans. One of these, BIR-1, appears to play no role in the regulation of
programmed cell death in C. elegans; however, BIR-1 is required for the
completion of cytokinesis. Furthermore, I demonstrated that a human
homologue of BIR-1, the BIRP survivin, can partially substitute for BIR-1 in the
nematode; this shows that BIRPs have a conserved role in the regulation of
cytokinesis. These results have subsequently been extended by other groups

who have shown that both fission and budding yeasts contain BIRPs and that in




each case inhibition of these genes leads to profound cell cycle defects and
polyploidy.

The BIR domain thus seems to have a role in cytokinesis in eukaryotic cells
ranging from single-celled yeasts to human cells. My focus has been to use C.
elegans to understand the function BIRPs in cytokinesis: how they are regulated,

what precise functional role they have, and which proteins do they interact with.
Experimental Approach

Cytokinesis is a complex process that is likely to be highly regulated and to
involve a large number of proteins. My approach to understanding how BIR-1
functions in cytokinesis has been to try to identify other genes that are also
required for cytokinesis in C. elegans. In this way I hope to be able to build up a
more comprehensive view of the cytokinesis machinery and subsequently to
attempt to understand how BIR-1 relates to this machinery. This approach has
recently been used very productively by the lab of Bob Horvitz, who has shown
that inhibition of Aurora-like kinase activity leads to a very similar defect in
cytokinesis to that seen following inhibition of BIR-1 and, following this
observation, that BIR-1 appears required for the localization of Aurora-like

kinase to the cytokinesis furrow and mid-body.

Rather than examine individual candidate genes to determine whether they have
a role in cytokinesis, I wished to carry out a genome-wide screen to identify all
genes that are required for cytokinesis; to do this I have made use of RNA-
mediated inhibition (RNAi). RNAI is a technique whereby the activity of a
particular gene is transiently inhibited following the introduction of dsRNA of
sequence specific to the targeted gene. The specificity and potency of RNAi
make it an ideal technique to investigate gene function beginning only with
genomic sequence. Ingestion of dsRNA-expressing bacteria results in RNAi of
the targeted gene and we have established that this technique is at least as
effective as the injection of dsRNA for RNAI. It is thus possible to make a library
of bacteria, each expressing dsRNA corresponding to an individual gene, to

target each and every predicted gene in the C. elegans genome.




I have made such a library for all genes on Chromosome I (~13% of all predicted
genes) and have screened these genes for RNAi phenotypes. I have identified
339 genes with RNAi phenotypes of which 221 are embryonic lethal (as would be
expected for a gene with a defect in cytokinesis). This analyéis of chromosome I
is the first systematic reverse genetic analysis of a multicellular organism and has

resulted in a Nature Article.

To further characterise the nature of the defect arising from RNAi of each of the
221 genes that are required for embryonic viability, our lab is currently in the
process of making time-lapse movies of embryos for all 221 embryonic lethal
genes to determine the nature of the defect that gives rise to embryonic lethality.
Thus far we have identified several genes that are required for cytokinesis.
These include profilin, an actin-binding protein; a gene encoding a protein with
high homology to a centromeric protein INCENP; and a homologue of the S.
cerevisine SCD6 gene which may be involved in vesicle fusion and trafficking, a

process thought to be involved in C. elegans cytokinesis.
Future Work

I am in the process of extending the RNAI analysis of the C. elegans genome to
encompass the remaining five chromosomes. I anticipate that construction of
the dsRNA-expressing bacterial library should be complete by early 2001, and
that analysis of the RNAi phenotypes of all embryonic lethal genes by time-lapse
videomicroscopy should be complete by summer 2001. By the time this screen is
completed, I expect to have identified 30-50 genes that are required for
cytokinesis. This should have greatly expanded our knowledge of the molecular
components of the cytokinesis machinery of C. elegans. 1 will then attempt to
elucidate how BIR-1 interacts with the identified gene products and thus to

understand the involvement of BIR-1 in cytokinesis.
Achievements

. Cloning of 2496 genes to generate a dsSRNA-expressing bacterial library.




. Screening the 2496 gene bacterial library to identify RNAi phenotypes of

the cloned genes.

. Identification of 339 genes with RNAi phenotypes, of which 221 are
required for embryonic viability. Detailed analysis of these data, culminating in

publication as a Nature Article (attached).

. Timelapse videomicroscopic analysis of the RNAi phenotypes of embryos

for 150 of the 221 genes required for embryonic viability.

. Identification of 5 new genes required for cytokinesis in C. elegans.
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Complete genomic sequence is known for two multicellular eukaryotes, the
nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and
will be soon for humans. However, biological function has been assigned to
only a small proportion of the predicted genes in any animal. We used RNA-
mediated interference (RNAI) to target nearly 90% of predicted genes on C.
elegans Chromosome I by feeding worms with bacteria that express double
stranded RNA. We have assigned function to 13.9% of the genes analysed,
increasing the number of sequenced genes with known phenotypes on
Chromosome I from 70 to 378. While most genes with sterile or embryonic
lethal RNAi phenotypes are involved in basal cell metabolism, many genes
giving post-embryonic phenotypes have conserved but unknown function. In
addition, conserved genes are significantly more likely to have an RNAi
phenotype than genes with no conservation. We have constructed a reusable
library of bacterial clones that permits unlimited future RNAi screens, which
should help develop a more complete view of the relationships between the

genome, gene function, and the environment.




The complete genomic sequence of an organism is an invaluable tool in
understanding the molecular mechanisms underlying its development and function.
The nematode worm C. elegans is one of two multicellular eukaryotes for which
essentially complete genomic sequence is known!.2. 36% of predicted C. elegans
genes have a significant human match!>3 including many genes implicated in human
diseases3+4, and functional analysis of the C. elegans genome has shed light on many
conserved biological processes and molecular pathways. A comprehensive functional
analysis of all genes in C. elegans would greatly expand our knowledge of conserved
gene function. We therefore decided to investigate systematically loss-of-function

phenotypes of predicted genes of C. elegans, starting with Chromosome 1.

RNA-mediated interference (RNAI) is a technique whereby the activity of a
gene is transiently inhibited following the introduction of double-stranded RNA
(dsRNA) of sequence specific to the targeted gene>. The specificity and potency of
RNAi make it ideal for investigating gene function beginning only with genomic
sequence®. Ingestion of dsRNA-expressing bacteria results in RNAi of the targeted
gene’, and we previously established that this technique is at least as effective as the
injection of dsSRNA for RNAi8: embryonic lethal phenotypes are detected with
similar efficiency by feeding and injection, but feeding detects over 50% more post-
embryonic phenotypes than injection. It is thus possible to make a library of
dsRNA-expressing bacteria which could be used for high-throughput genome-wide
RNAI screens at very low cost. It is important to note that since RNAi does not
efficiently inhibit all genes, an RNAi-based screen will miss some relevant genes.
Despite this caveat, RNAI is a useful screening tool to complement classical forward

genetics.
Analysis of the function of genes on Chromosome I by RNAi

We constructed a library of bacteria expressing dsRNA corresponding to genes

on Chromosome I. Chromosome I is the second smallest chromosome, has few




duplicated gene clusters and has no striking unusual features!. Each individual
bacterial clone is able to synthesise dSRNA designed to target a single gene; since gene
predictions are still chapging, a few primer pairs no longer correspond to single genes
(see Methods). In total, the resulting library contains 2445 independent clones,
corresponding to 2416 predicted genes, a total of 87.3% of the 2769 currently

predicted genes of Chromosome I.

We screened the library to identify genes whose inhibition gives a clearly detectable
phenotype in wild-type worms as described in Methods. We were able to assign a
phenotype to 13.9% of the analysed genes, raising the number of sequenced genes on
chromosome I with known phenotypes from 70 to 378 (Table 1). Many genes have
more than one associated phenotype, reflecting that genes frequently have multiple
functions in the organism. Furthermore, since we examined worms that were only
exposed to dsRNA as larvae or adults as well as their progeny, we could assign post-
embryonic phenotypes to genes that result in sterility or produce 100% embryonic
lethal progeny. A summary of these results and a partial listing of the phenotypes
obtained are given in Tables 1 and 3. Full results are in Supplementary Table 1 and

arepublicly accessible in WormBase (www.wormbase.org).

Our screen was sufficiently effective to identify 90% of known embryonic
lethal genes. In addition, we were able to assign phenotypes to 45% of genes with a
known post-embryonic phenotype that should have been detectable in our screen
(Table 2 and Supplementary Table 2). However, we failed to find phenotypes for a
number of previously characterised genes. In some cases (e. g. fog-3), this was not
due to an inherent difficulty in inhibiting the genes using RNAI (since we obtained the
correct phenotype in a separate experiment), but simply because we overlooked them
in the screen. However, only one of eight genes involved in neuronal function gave a
detectable RNAI phenotype; this accords well with our finding that neurons appear to

be more resistant to RNAi than other cell types8. Similarly, we did not detect




phenotypes for several genes involved in sperm development (fer-1, spe-9, and spe-

1).

The largest phenotypic class, comprising over 60% of the genes, are those
whose inhibition by RNAi gives rise to embryonic lethality, the Emb genes; these
include a large number of components of the basal cellular machinery. More
interestingly, we find a homologue of the SMN human disease gene?, a \}ariety of
genes encoding RNA-binding proteins (several such proteins play a role in early
polarity; reviewed in 10), a number of genes involved in chromosome condensation and
separation, components of signal transduction pathways and many conserved genes

that have no known biochemical function.

The largest class of post-embryonic phenotype is the Uncoordinated (Unc)
class. Unc phenotypes arise from defects in the development or function of the
neuromuscular system (reviewed in 11). We find Unc genes encoding proteins
involved in vesicle sorting and fusion as well as transcription factors (including a
homologue of the zinc finger transcription factor MYT-1 which is only expressed in
developing neurons in mammals12-14) and components of the cytoskeleton (e. g. a

kakapo!5-18 and a talin!9 homologue).

A number of genes showed a high incidence of males (Him) phenotype. C.
elegans is usually grown as a self-fertilising hermaphrodite with males arising at a low
frequency in wild-type cultures due to non-disjunction of the X-chromosome
(hermaphrodites have two X chromosomes, males only one). An increased number of
males is indicative of either the incorrect segregation and maintenance of chromosomes
in the germ line (reviewed in 29) or defects in sexual specification. The Him genes that
we identified include kinesins, a katanin homologue?!22 and a nuclear hormone

receptor.

Conservation of genes with RNAi phenotypes across eukaryotes




We examined the level of cross-species conservation of the genes for which we
detected an RNAi phenotype (Fig 1). To find C. elegans genes that are conserved in
other species, we identified C. elegans genes that have hits with BlastP23 e-values
below 1.00E-06 in Saccharomyces cerevisiae, Drosophila melanogaster or humans;
we define these as a “match”. Hits with BlastP e-values below 1.00E-10 and in which
the conservation extends over at least 80% of the C. elegans protein length, we
defined as “homologues”; this category includes orthologues. This provides a
conservative estimate of the number of genes with regions of conservation (matches)

or homologues, respectively.

We found that genes with RNAi phenotypes were much more likely to have a match
(p<0.001) compared to all genes (Fig 1). Most striking is the similarity that we see
between C. elegans and Drosophila: while 42% of C. elegans genes have a match and
19% have a homologue in Drosophila, we find that over 72% of genes with an RNAi
phenotype have a Drosophila match and 43% have a homologue (Fig 1). This
analysis shows that genes with a required function in C. elegans have been highly
conserved across eukaryotic evolution. We also find that highly conserved genes are
more likely to have an RNAi phenotype than genes that show no conservation: 26%
of C. elegans genes that have a homologue in one of the organisms examined give an

RNAI phenotype compared to only 5% of genes with no conservation (p<0.001).
Physical distribution on chromosome I of genes with RNAi phenotypes

Genes for which we identified an RNAi phenotype are evenly distributed
across the chromosome with the exception of two regions (corresponding to segments
2 and 8-9 in Fig 2a) for which there appears to be a drop in number (p<0.1). These
two regions correspond to the two regions of chromosome I that contain locally
duplicated gene clusters!. We suggest that the reduction in the number of phenotypes
observed by RNAI in these regions may be due to gene duplication and thus

redundancy of function. It is worth noting that some of the predicted genes in the




duplicated regions may not be expressed: while genes with RNAi phenotypes are
equally likely to have an EST in all regions of the genome (see below), there is a
significant drop (p<0.05) in the proportion of total genes with ESTs in the second
locally duplicated gene cluster region (Fig 2b; 39% of genes in the second cluster have
an EST compared with 53% over the entire chromosome). We suggest that a portion

of the predicted genes in such regions of duplication may in fact be pseudogenes.

Genes that give RNAi phenotypes are much more likely to have an EST than
genes on chromosome I in general (82% versus 53% respectively, p<0.001; Fig 2b).
The relatively high percentage of genes with RNAi phenotypes that have ESTs may
reflect that these genes are expressed at higher levels. It may also be that many genes
that currently lack ESTs are only expressed conditionally; we are unlikely to have

found phenotypes for such genes.

In C. elegans, there is evidence of differences between the chromosome arms
and the central regions (the clusters), suggesting that there might be differences in gene
type or function across the chromosome?4. In general, the distribution of genes in any
given phenotypic class was similar to that for all genes with an RNAi phenotype (e. g.
Emb genes; compare Fig 2¢ with 2a). However, genes with viable post-embryonic
phenotypes (Pep genes) — those that gave a post-embryonic phenotype without any
embryonic or post-embryonic lethality, sterility, or developmental delay — show a
trend toward enrichment at the arms of chromosome I (p<0.1). It has been suggested
that the chromosome arms may be more prone to mutation and recombination than the
central core portion24 and, if so, that novel gene functions are more likely to evolve in
such regions. Our finding that genes which uniquely affect post-embryonic

development cluster at the arms supports this model.

Relationships between the predicted biochemical function of a gene product

and its RNAi phenotype




To explore the relationship between the biochemical function of a gene product
and its mutant phenotype, we categorised the sterile (Ste), embryonic lethal (Emb),
uncoordinated (Unc) and viable post-embryonic phenotype (Pep) genes into the

functional classes shown in Fig 3a.

Unsurprisingly, genes involved in basal metabolic processes account for ~50%
of Ste and Emb genes (Fig. 3a); this confirms that these basic biochemical processes
are indeed essential for viability. In contrast, under 20% of Unc and Pep genes encode
components of the basal metabolic machinery, whereas more than twice as many
encode proteins with more specialized functions (Figs. 3a, b). There is thus a clear
difference between the types of gene required for germline function or embryonic
viability (which mainly require basal machinery) and those involved in later
developmental processes which appear to require proteins either of more specialized

functions or of as yet unknown function (Fig. 3b).

A second clear trend is that the number of genes of unknown function
increases greatly in the Unc and Pep genes, making this the largest overall class for
those phenotypes (Fig. 3). This shift underlies the fact that while we know a great
deal about basic metabolic processes of eukaryotic cells (and thus can readily ascribe
function to a large proportion of Ste and Emb genes), much is still to be learnt about
the complex processes and the genes that regulate the development and function of a
multicellular eukaryote. A significant number (~25%) of genes of unknown function
have close homologues in Drosophila or humans; further study of these may shed

light on conserved processes specific to animals.

Comparison of genes essential for viability of S. cerevisiae and C. elegans

S. cerevisiae was the first eukaryote to be completely sequenced?> and reverse
genetics has been used extensively to investigate S. cerevisiae gene function. In a set

of 3680 genes knocked out by targeted disruption, 890 affect viability26; we compared



these genes to those that gave different RNAi phenotypes in C. elegans. Yeast and
worm genes important for viability have a similar distribution within the different
functional classes, but are different from the Unc or Pep distributions (Fig 3c; also
compare to 3a and 3b). This suggests that similar types of gene are required for
viability of yeast and animal cells. A striking difference (p<0.001) is that only ~1% of
the genes required for viability in yeast are transcription factors, whereas for C.
elegans it is ~4% (a similar percentage of the genomes of yeast?? and C. elegans?
encode transcription factors, 3.3% and 2.5% respectively). This suggests that a large
fraction of the C. elegans transcription factors required for viability may be involved

in specific developmental processes.
An estimate of the size of the functionally non-redundant genome

What do our data tell us about the size of the functionally non-redundant
genome? We screened 12.7% of the C. elegans genome and found that 339 genes gave
a clearly discernible phenotype. Taking into account the sensitivity of our screen and
scaling up to the entire genome, we estimate that ~5400 genes will be individually
required for wild-type C. elegans development under standard laboratory conditions
(~2300 genes for embryonic viability and ~3100 post-embryonically; see Methods for
calculation). This is comparable to previous estimates based on forward genetics28,
We expect that phenotypes for other genes will be identified under novel conditions
(e. g. environmental stress), in other genetic backgrounds, or using more refined and

restricted screening conditions.
Discussion

We have taken a systematic approach to identify functions for the predicted
genes of C. elegans Chromosome I. This is the first large-scale reverse genetic
analysis of a multicellular organism and has increased by five-fold the number of

sequenced genes with known phenotypes on this chromosome.




While we have identified RNAi phenotypes for many genes, some will have
eluded our screen for one of at least two reasons. Firstly, RNAi may have been
ineffective against the targeted gene. RNAI does not accurately phenocopy the null
phenotype of all genes (e. g. genes involved in neuronal function), and may result in
either partial or no loss of function. It should also be noted that if multiple genes have
regions of identical or near-identical nucleotide sequence, RNAi could target them
simultaneously, so that the observed phenotype may be the result of the inhibition of
more than one gene. Secondly, we will not have detected either subtle or conditional
phenotypes. However, we anticipate that future RNAi-based screens using specific
assays should be able to detect phenotypes for many more genes, thus increasing our
understanding of C. elegans and hence of metazoan biology in general. Since our
library consists of bacterial clones that can be replicated, and the feeding protocol is
relatively simple compared with injection, the library can be used repeatedly at low
cost and high efficiency for such screens. In addition, we expect that a feeding library
and database of associated phenotypes will prove valuable for the positional cloning
of genes; currently there are over 300 genes on chromosome I identified by mutation

but not yet cloned.

Although the time needed for an RNAI screen using our bacterial library is
similar to that for a classical genetic screen, the two approaches have different
advantages and will yield different results. Both approaches can be used to screen the
entire genome for genes involved in a particular process, and both may identify
complete or partial loss-of-function phenotypes. Classical forward genetics generates
stable mutant lines that can be maintained indefinitely; furthermore, while some genes
are resistant to RNAI, all genes are sensitive to mutagens (albeit to a greater or lesser
degree) and could thus be cloned using a classical screen. Also, some mutants isolated
by forward genetics are due to gain-of-function mutations, which cannot be generated
by RNAi. However, the positional cloning of a gene is often slow and laborious.

RNAI, while having the disadvantages mentioned above, has the key advantage of all




reverse genetics: the sequence of the gene is already known, and thus any mutant

phenotype observed is automatically connected to a known sequence.

In the future, we aim to extend our library construction and functional analysis
to the entire C. elegans genome and anticipate that the possibility of genome-wide
RNAI screening, in conjunction with other functional genomics approaches such as
expression analyses using microarrays2® and two-hybrid experiments30 will accelerate

C. elegans research.
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Methods

Generation and cloning of PCR products. PCR products were synthesised
using BioTaq polymerase (Bioline) in a reaction containing 25ng of C. elegans genomic
DNA, 20pmol of C. elegans GenePairs primers (Research Genetics) and 100uM
dNTPs: 34 cycles of [94°C 30s, 58°C 30s, 72°C 90s] were followed by an extension
of 1hr at 72°C to enhance A-tailing of products. Products were ligated into linearized
T-tailed L4440 vector’ and transformed into the HT115(DE3) bacterial strain (L.
Timmons and A. Fire, pers. comm.) using standard methods. Colonies containing
correct sized insert were identified by PCR using vector specific oligos, and the cloned

inserts confirmed by PCR using the original Research Genetics primer pair. Primer

sequences are available at http:/cmgm stanford.edu/~kimlab/primers.12-22-99 html.

RNAi screening. RNAi was performed essentially as described in Kamath ef als,
where feeding data on 86 of the 2445 genes described here was previously reported.

In brief, 4 wells of a 12-well plate containing NGM agar + 1mM IPTG + 25ug/ml
carbenicillin were inoculated with bacterial cultures grown 8-18 hours for each targeted
gene. 10-15 L3-L4 stage worms were placed in the first of the 4 wells for each gene
and left for 72hrs at 15°C. Three worms, now young adults, were removed and
individually placed on three remaining wells for each gene and allowed to lay embryos
for 24hrs at room temperature; the three worms were then removed (t=0). The
phenotypes of adults and progeny remaining in the first well were scored as well as of
the progeny in wells 1-3. Our screen was not ideal for detection of phenotypes visible
only in adults (e. g. egg-laying defective and progeny sterile); we will have missed
some of these. Phenotypic analysis of lethality/sterility was carried out at t=24hr and
post-embryonic phenotypes were analysed by two independent observers at t=36hr,
t=48hr, t=60hr and t=72hr. Phenotypic classes were defined as follows. Embryonic
lethal (Emb) reproducibly has 10-100% embryonic lethality; sterile (Ste) has a brood

size of less than or equal to 10 (wild-type worms in these conditions typically give
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over 50); progeny sterile (Stp) has a brood size of less than or equal to 10 in the
progeny of fed worms. Post-embryonic phenotypes require at least 10% of the
analysed worms to display a given phenotype; phenotypic classes are given in Table
1 legend. A full listing of phenotypes obtained is given in Supplementary Table 1;
genes that we did not clone, and thus did not analyse, are given in Supplementary
Table 3. Thus, any GenePair absent from both Supplementary Tables 1 and 3 was

fed and did not give a detectable mutant phenotype.
Bioinformatic analyses and categorisation of genes into functional classes.

Analyses were carried out on GenePairs predictions rather than currently predicted
genes since while gene predictions change, phenotypes will always match the
GenePair. ~95% of GenePairs genes have a one-to-one match with a currently
predicted gene. Current gene predictions that are targeted for RNAIi by the primer
pairs were identified by comparing electronic PCR (ePCR) fragments (generated using
the ePCR program (ftp.ncbi.nlm.nih.gov/pub/schuler/e-PCR)31 on the whole
chromosome DNA files from the WSO release of ACeDB
(ftp.sanger.ac.uk/pub/wormbase)) to gene predictions in ACeDB. To identify
additional genes that might be targeted for RNAi by a particular clone we found those
with an overlap of 200bp or more with greater than 80% nucleotide identity with the
predicted PCR product (asterisks in column 2 of Table 3 denote GenePairs that have
such matches); however it is not yet known what level of identity is required for

RNAI.

To find C. elegans genes with conservation in other organisms, BlastP23 was carried
out for each individual C. elegans gene on Chromosome I against S. cerevisiae,
Drosophila melanogaster and human sequences. The databases used were as follows:
C. elegans (18337 entries), S. cerevisae (6191 entries) and D. melanogaster (13743
entries) downloaded on 1 June 2000 from www.ebi.ac.uk/proteome; and H. sapiens

(35723 entries, confirmed peptides) downloaded on 1 June 2000 from
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Complete genomic sequence is known for two multicellular eukaryotes, the
nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and
will be soon for humans. However, biological function has been assigned to
only a small proportion of the predicted genes in any animal. We used RNA-
mediated interference (RNAI) to target nearly 90% of predicted genes on C.
elegans Chromosome I by feeding worms with bacteria that express double
stranded RNA. We have assigned function to 13.9% of the genes analysed,
increasing the number of sequenced genes with known phenotypes on
Chromosome I from 70 to 378. While most genes with sterile or embryonic
lethal RNAi phenotypes are involved in basal cell metabolism, many genes
giving post-embryonic phenotypes have conserved but unknown function. In
addition, conserved genes are significantly more likely to have an RNAi
phenotype than genes with no conservation. We have constructed a reusable
library of bacterial clones that permits unlimited future RNAi screens, which
should help develop a more complete view of the relationships between the

genome, gene function, and the environment.




The complete genomic sequence of an organism is an invaluable tool in
understanding the molecular mechanisms underlying its development and function.
The nematode worm C. elegans is one of two multicellular eukaryotes for which
essentially complete genomic sequence is known!,2. 36% of predicted C. elegans
genes have a significant human match!-3 including many genes implicated in human
diseases34, and functional analysis of the C. elegans genome has shed light on many
conserved biological processes and molecular pathways. A comprehensive functional
analysis of all genes in C. elegans would greatly expand our knowledge of conserved
gene function. We therefore decided to investigate systematically loss-of-function

phenotypes of predicted genes of C. elegans, starting with Chromosome I.

RNA-mediated interference (RNALI) is a technique whereby the activity of a
gene is transiently inhibited following the introduction of double-stranded RNA
(dsRNA) of sequence specific to the targeted geneS. The specificity and potency of
RNAi make it ideal for investigating gene function beginning only with genomic
sequenced. Ingestion of dsRNA-expressing bacteria results in RNAi of the targeted
gene’, and we previously established that this technique is at least as effective as the
injection of dsRNA for RNAi8: embryonic lethal phenotypes are detected with
similar efficiency by feeding and injection, but feeding detects over 50% more post-
embryonic phenotypes than injection. It is thus possible to make a library of
dsRNA-expressing bacteria which could be used for high-throughput genome-wide
RNAI screens at very low cost. It is important to note that since RNAi does not
efficiently inhibit all genes, an RNAi-based screen will miss some relevant genes.
Despite this caveat, RNALI is a useful screening tool to complement classical forward

genetics.
Analysis of the function of genes on Chromosome I by RNAi

We constructed a library of bacteria expressing dsRNA corresponding to genes

on Chromosome I. Chromosome I is the second smallest chromosome, has few




duplicated gene clusters and has no striking unusual features!. Each individual
bacterial clone is able to synthesise dsSRNA designed to target a single gene; since gene
predictions are still changing, a few primer pairs no longer correspond to single genes
(see Methods). In total, the resulting library contains 2445 independent clones,
corresponding to 2416 predicted genes, a total of 87.3% of the 2769 currently

predicted genes of Chromosome 1.

We screened the library to identify genes whose inhibition gives a clearly detectable
phenotype in wild-type worms as described in Methods. We were able to assign a
phenotype to 13.9% of the analysed genes, raising the number of sequenced genes on
chromosome I with known phenotypes from 70 to 378 (Table 1). Many genes have
more than one associated phenotype, reflecting that genes frequently have multiple
functions in the organism. Furthermore, since we examined worms that were only
exposed to dsSRNA as larvae or adults as well as their progeny, we could assign post-
embryonic phenotypes to genes that result in sterility or produce 100% embryonic
lethal progeny. A summary of these results and a partial listing of the phenotypes
obtained are given in Tables 1 and 3. Full results are in Supplementary Table 1 and

arepublicly accessible in WormBase (www.wormbase.org).

Our screen was sufficiently effective to identify 90% of known embryonic
lethal genes. In addition, we were able to assign phenotypes to 45% of genes with a
known post-embryonic phenotype that should have been detectable in our screen
(Table 2 and Supplementary Table 2). However, we failed to find phenotypes for a
number of previously characterised genes. In some cases (e. g. fog-3), this was not
due to an inherent difficulty in inhibiting the genes using RNAI (since we obtained the
correct phenotype in a separate experiment), but simply because we overlooked them
in the screen. However, only one of eight genes involved in neuronal function gave a
detectable RNAI phenotype; this accords well with our finding that neurons appear to

be more resistant to RNAi than other cell types8. Similarly, we did not detect




phenotypes for several genes involved in sperm development (fer-1, spe-9, and spe-

1).

The largest phenotypic class, comprising over 60% of the genes, are those
whose inhibition by RNAi gives rise to embryonic lethality, the Emb genes; these
include a large number of components of the basal cellular machinery. More
interestingly, we find a homologue of the SMN human disease gene?, a variety of
genes encoding RNA-binding proteins (several such proteins play a role in early
polarity; reviewed in 10), a number of genes involved in chromosome condensation and
separation, components of signal transduction pathways and many conserved genes

that have no known biochemical function.

The largest class of post-embryonic phenotype is the Uncoordinated (Unc)
class. Unc phenotypes arise from defects in the development or function of the
neuromuscular system (reviewed in 11). We find Unc genes encoding proteins
involved in vesicle sorting and fusion as well as transcription factors (including a
homologue of the zinc finger transcription factor MYT-1 which is only expressed in
developing neurons in mammals!2-14) and components of the cytoskeleton (e. g. a

kakapo!5-18 and a talin!® homologue).

A number of genes showed a high incidence of males (Him) phenotype. C.
elegans is usually grown as a self-fertilising hermaphrodite with males arising at a low
frequency in wild-type cultures due to non-disjunction of the X-chromosome
(hermaphrodites have two X chromosomes, males only one). An increased number of
males is indicative of either the incorrect segregation and maintenance of chromosomes
in the germ line (reviewed in 20) or defects in sexual specification. The Him genes that
we identified include kinesins, a katanin homologue?!,22 and a nuclear hormone

receptor.

Conservation of genes with RNAi phenotypes across eukaryotes




We examined the level of cross-species conservation of the genes for which we
detected an RNAi phenotype (Fig 1). To find C. elegans genes that are conserved in
other species, we identified C. elegans genes that have hits with BlastP23 e-values
below 1.00E-06 in Saccharomyces cerevisiae, Drosophila melanogaster or humans;
we define these as a “match”. Hits with BlastP e-values below 1.00E-10 and in which
the conservation extends over at least 80% of the C. elegans protein length, we
defined as “homologues”; this category includes orthologues. This provides a
conservative estimate of the number of genes with regions of conservation (matches)

or homologues, respectively.

We found that genes with RNAi phenotypes were much more likely to have a match
(p<0.001) compared to all genes (Fig 1). Most striking is the similarity that we see
between C. elegans and Drosophila: while 42% of C. elegans genes have a match and
19% have a homologue in Drosophila, we find that over 72% of genes with an RNAi
phenotype have a Drosophila match and 43% have a homologue (Fig 1). This
analysis shows that genes with a required function in C. elegans have been highly
conserved across eukaryotic evolution. We also find that highly conserved genes are
more likely to have an RNAI phenotype than genes that show no conservation: 26%
of C. elegans genes that have a homologue in one of the organisms examined give an

RNAI phenotype compared to only 5% of genes with no conservation (p<0.001).
Physical distribution on chromosome I of genes with RNAi phenotypes

Genes for which we identified an RNAi phenotype are evenly distributed
across the chromosome with the exception of two regions (corresponding to segments
2 and 8-9 in Fig 2a) for which there appears to be a drop in number (p<0.1). These
two regions correspond to the two regions of chromosome I that contain locally
duplicated gene clusters!. We suggest that the reduction in the number of phenotypes
observed by RNAI in these regions may be due to gene duplication and thus

redundancy of function. It is worth noting that some of the predicted genes in the




duplicated regions may not be expressed: while genes with RNAi phenotypes are
equally likely to have an EST in all regions of the genome (see below), there is a
significant drop (p<0.05) in the proportion of total genes with ESTs in the second
locally duplicated gene cluster region (Fig 2b; 39% of genes in the second cluster have
an EST compared with 53% over the entire chromosome). We suggest that a portion

of the predicted genes in such regions of duplication may in fact be pseudogenes.

Genes that give RNAi phenotypes are much more likely to have an EST than
genes on chromosome I in general (82% versus 53% respectively, p<0.001; Fig 2b).
The relatively high percentage of genes with RNAi phenotypes that have ESTs may
reflect that these genes are expressed at higher levels. It may also be that many genes
that currently lack ESTs are only expressed conditionally; we are unlikely to have

found phenotypes for such genes.

In C. elegans, there is evidence of differences between the chromosome arms
and the central regions (the clusters), suggesting that there might be differences in gene
type or function across the chromosome?4. In general, the distribution of genes in any
given phenotypic class was similar to that for all genes with an RNAi phenotype (e. g.
Emb genes; compare Fig 2¢ with 2a). However, genes with viable post-embryonic
phenotypes (Pep genes) — those that gave a post-embryonic phenotype without any
embryonic or post-embryonic lethality, sterility, or developmental delay — show a
trend toward enrichment at the arms of chromosome I (p<0.1). It has been suggested
that the chromosome arms may be more prone to mutation and recombination than the
central core portion24 and, if so, that novel gene functions are more likely to evolve in
such regions. Our finding that genes which uniquely affect post-embryonic

development cluster at the arms supports this model.

Relationships between the predicted biochemical function of a gene product

and its RNAi phenotype




To explore the relationship between the biochemical function of a gene product
and its mutant phenotype, we categorised the sterile (Ste), embryonic lethal (Emb),
uncoordinated (Unc) and viable post-embryonic phenotype (Pep) genes into the

functional classes shown in Fig 3a.

Unsurprisingly, genes involved in basal metabolic processes account for ~50%
of Ste and Emb genes (Fig. 3a); this confirms that these basic biochemical processes
are indeed essential for viability. In contrast, under 20% of Unc and Pep genes encode
components of the basal metabolic machinery, whereas more than twice as many
encode proteins with more specialized functions (Figs. 3a, b). There is thus a clear
difference between the types of gene required for germline function or embryonic
viability (which mainly require basal machinery) and those involved in later
developmental processes which appear to require proteins either of more specialized

functions or of as yet unknown function (Fig. 3b).

A second clear trend is that the number of genes of unknown function
increases greatly in the Unc and Pep genes, making this the largest overall class for
those phenotypes (Fig. 3). This shift underlies the fact that while we know a great
deal about basic metabolic processes of eukaryotic cells (and thus can readily ascribe
function to a large proportion of Ste and Emb genes), much is still to be learnt about
the complex processes and the genes that regulate the development and function of a
multicellular eukaryote. A significant number (~25%) of genes of unknown function
have close homologues in Drosophila or humans; further study of these may shed

light on conserved processes specific to animals.

Comparison of genes essential for viability of S. cerevisiae and C. elegans

S. cerevisiae was the first eukaryote to be completely sequenced?’ and reverse
genetics has been used extensively to investigate S. cerevisiae gene function. In a set

of 3680 genes knocked out by targeted disruption, 890 affect viability26; we compared




these genes to those that gave different RNAi phenotypes in C. elegans. Yeast and
worm genes important for viability have a similar distribution within the different
functional classes, but are different from the Unc or Pep distributions (Fig 3c; also
compare to 3a and 3b). This suggests that similar types of gene are required for
viability of yeast and animal cells. A striking difference (p<0.001) is that only ~1% of
the genes required for viability in yeast are transcription factors, whereas for C.
elegans it is ~4% (a similar percentage of the genomes of yeast? and C. elegans?
encode transcription factors, 3.3% and 2.5% respectively). This suggests that a large
fraction of the C. elegans transcription factors required for viability may be involved

in specific developmental processes.
An estimate of the size of the functionally non-redundant genome

What do our data tell us about the size of the functionally non-redundant
genome? We screened 12.7% of the C. elegans genome and found that 339 genes gave
a clearly discernible phenotype. Taking into account the sensitivity of our screen and
scaling up to the entire genome, we estimate that ~5400 genes will be individually
required for wild-type C. elegans development under standard laboratory conditions
(~2300 genes for embryonic viability and ~3100 post-embryonically; see Methods for
calculation). This is comparable to previous estimates based on forward genetics?8,
We expect that phenotypes for other genes will be identified under novel conditions
(e. g. environmental stress), in other genetic backgrounds, or using more refined and

restricted screening conditions.
Discussion

We have taken a systematic approach to identify functions for the predicted
genes of C. elegans Chromosome I. This is the first large-scale reverse genetic
analysis of a multicellular organism and has increased by five-fold the number of

sequenced genes with known phenotypes on this chromosome.




While we have identified RNAi phenotypes for many genes, some will have
eluded our screen for one of at least two reasons. Firstly, RNAi may have been
ineffective against the targeted gene. RNAi does not accurately phenocopy the null
phenotype of all genes (e. g. genes involved in neuronal function), and may result in
either partial or no loss of function. It should also be noted that if multiple genes have
regions of identical or near-identical nucleotide sequence, RNAI could target them
simultaneously, so that the observed phenotype may be the result of the inhibition of
more than one gene. Secondly, we will not have detected either subtle or conditional
phenotypes. However, we anticipate that future RNAi-based screens using specific
assays should be able to detect phenotypes for many more genes, thus increasing our
understanding of C. elegans and hence of metazoan biology in general. Since our
library consists of bacterial clones that can be replicated, and the feeding protocol is
relatively simple compared with injection, the library can be used repeatedly at low
cost and high efficiency for such screens. In addition, we expect that a feeding library
and database of associated phenotypes will prove valuable for the positional cloning
of genes; currently there are over 300 genes on chromosome I identified by mutation

but not yet cloned.

Although the time needed for an RNAI screen using our bacterial library is
similar to that for a classical genetic screen, the two approaches have different
advantages and will yield different results. Both approaches can be used to screen the
entire genome for genes involved in a particular process, and both may identify
complete or partial loss-of-function phenotypes. Classical forward genetics generates
stable mutant lines that can be maintained indefinitely; furthermore, while some genes
are resistant to RNAI, all genes are sensitive to mutagens (albeit to a greater or lesser
degree) and could thus be cloned using a classical screen. Also, some mutants isolated
by forward genetics are due to gain-of-function mutations, which cannot be generated
by RNAi. However, the positional cloning of a gene is often slow and laborious.

RNAI, while having the disadvantages mentioned above, has the key advantage of all




reverse genetics: the sequence of the gene is already known, and thus any mutant

phenotype observed is automatically connected to a known sequence.

In the future, we aim to extend our library construction and functional analysis
to the entire C. elegans genome and anticipate that the possibility of genome-wide
RNAI screening, in conjunction with other functional genomics approaches such as
expression analyses using microarrays2? and two-hybrid experiments30 will accelerate

C. elegans research.
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Methods

Generation and cloning of PCR products. PCR products were synthesised
using BioTaq polymerase (Bioline) in a reaction containing 25ng of C. elegans genomic
DNA, 20pmol of C. elegans GenePairs primers (Research Genetics) and 100uM
dNTPs: 34 cycles of [94°C 30s, 58°C 30s, 72°C 90s] were followed by an extension
of 1hr at 72°C to enhance A-tailing of products. Products were ligated into linearized
T-tailed L4440 vector’ and transformed into the HT115(DE3) bacterial strain (L.
Timmons and A. Fire, pers. comm.) using standard methods. Colonies containing
correct sized insert were identified by PCR using vector specific oligos, and the cloned
inserts confirmed by PCR using the original Research Genetics primer pair. Primer

sequences are available at http://cmgm stanford.edu/~kimlab/primers.12-22-99 html.

RNAI screening. RNAi was performed essentially as described in Kamath et al8,
where feeding data on 86 of the 2445 genes described here was previously reported.

In brief, 4 wells of a 12-well plate containing NGM agar + 1mM IPTG + 25ug/ml
carbenicillin were inoculated with bacterial cultures grown 8-18 hours for each targeted
gene. 10-15 L3-L4 stage worms were placed in the first of the 4 wells for each gene
and left for 72hrs at 15°C. Three worms, now young adults, were removed and
individually placed on three remaining wells for each gene and allowed to lay embryos
for 24hrs at room temperature; the three worms were then removed (t=0). The
phenotypes of adults and progeny remaining in the first well were scored as well as of
the progeny in wells 1-3. Our screen was not ideal for detection of phenotypes visible
only in adults (e. g. egg-laying defective and progeny sterile); we will have missed
some of these. Phenotypic analysis of lethality/sterility was carried out at t=24hr and
post-embryonic phenotypes were analysed by two independent observers at t=36hr,
t=48hr, t=60hr and t=72hr. Phenotypic classes were defined as follows. Embryonic
lethal (Emb) reproducibly has 10-100% embryonic lethality; sterile (Ste) has a brood

size of less than or equal to 10 (wild-type worms in these conditions typically give
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over 50); progeny sterile (Stp) has a brood size of less than or equal to 10 in the
progeny of fed worms. Post-embryonic phenotypes require at least 10% of the
analysed worms to display a given phenotype; phenotypic classes are given in Table
1 legend. A full listing of phenotypes obtained is given in Supplementary Table 1;
genes that we did not clone, and thus did not analyse, are given in Supplementary
Table 3. Thus, any GenePair absent from both Supplementary Tables 1 and 3 was

fed and did not give a detectable mutant phenotype.
Bioinformatic analyses and categorisation of genes into functional classes.

Analyses were carried out on GenePairs predictions rather than currently predicted
genes since while gene predictions change, phenotypes will always match the
GenePair. ~95% of GenePairs genes have a one-to-one match with a currently
predicted gene. Current gene predictions that are targeted for RNAIi by the primer
pairs were identified by comparing electronic PCR (ePCR) fragments (generated using
the ePCR program (ftp.ncbi.nlm.nih.gov/pub/schuler/e-PCR)3! on the whole
chromosome DNA files from the WSO release of ACeDB
(ftp.sanger.ac.uk/pub/wormbase)) to gene predictions in ACeDB. To identify
additional genes that might be targeted for RNAI by a particular clone we found those
with an overlap of 200bp or more with greater than 80% nucleotide identity with the
predicted PCR product (asterisks in column 2 of Table 3 denote GenePairs that have
such matches); however it is not yet known what level of identity is required for

RNAI.

To find C. elegans genes with conservation in other organisms, BlastP23 was carried
out for each individual C. elegans gene on Chromosome I against S. cerevisiae,
Drosophila melanogaster and human sequences. The databases used were as follows:
C. elegans (18337 entries), S. cerevisae (6191 entries) and D. melanogaster (13743
entries) downloaded on 1 June 2000 from www.ebi.ac.uk/proteome; and H. sapiens

(35723 entries, confirmed peptides) downloaded on 1 June 2000 from
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www.ensembl.org. NCBI-Blast2 was used (BLASTP 2.0.6) with the SEG filter, and

the search space was set to 7947758.

We defined “sequenced genes with a known phenotype” as being those with a named
entry in ACeDB that also have a known phenotype entered in ACeDB, WormBase
(www.wormbase.org) or the Proteome database (www.proteome.com). EST data was

supplied by the Sanger Centre on 21 June 2000.

Predicted gene products were placed into functional classes by manual inspection,
primarily using data from Proteome, InterPro and Blast analysis?3-32. The functional
classes are: (1) DNA synthesis; (2) RNA synthesis and processing including general
transcription machinery, splicing/processing, RNA binding and regulation of
chromatin; (3) Protein synthesis and proteolysis including translation, degradation and
folding; (4) Metabolism including energy production and intermediary metabolism; (5)
Cell cycle and chromosome dynamics; (6) Cell biology and cellular structure including
cell junction/adhesion, cytoskeleton, ion channels, protein trafficking and vesicle
regulation and cell polarity; (7) Gene specific transcription; and (8) Signal transduction
including kinases, phosphatases and components of signal transduction pathways.The
Unknown functional class contains genes which either have motifs about which there
is insufficient information to assign a function, or genes with no significant matches in

any organism.

Estimates of non-redundant genome size were done as follows. We detected 90.5% of
genes known to give an embryonic lethal phenotype and 32.6% of genes known to
give a post-embryonic phenotype. After screening 87.3% of the genes on
chromosome I, we identified 226 Emb genes and 113 genes that only gave a post-
embryonic RNAIi phenotype (including steriles); adjusting for our efficiencies of
detection, we estimate that on chromosome I, 286 genes should be required for

viability and ~397 for post-embryonic processes. We screened 12.7% of the genome,
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and thus for the entire genome we expect 2250 Emb genes and 3130 genes to have a

post-embryonic phenotype.
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Figure Legends

Table 1 Summary of phenotypes arising from RNAi of genes on
Chromosome |. The number of predicted genes whose targeting via RNAI
gave rise to each phenotype is shown. Percentages are given as
percentage of total number of clones screened (2445). Phenotypic classes
were defined as described in Methods. The phenotypes are Emb
(embryonic lethal), Ste (sterile), Stp (sterile progeny), Gro (slow post-
embryonic growth), Lva (larval arrest), Lvl (larval lethality), Unc
(uncoordinated), Pvl (protruding vulva), Bmd (body morphological defects),
Dpy (dumpy), Clr (clear), Him (high incidence of males), Rup (ruptured), MIt
(molt defects), Prz (paralyzed), Sma (small), Egl (egg-laying defective), Sck
(sick), Bli (blistering of cuticle), Muv (multivulva), Rol (roller), Adl (adult
lethal), Lon (long), and Hya (hyperactive).

Table 2 Detection of forward genetic loci on Chromosome | by RNAi.
RNAIi phenotypes were compared to those of genes that have known loss-
of-function phenotypes. “Genetic loci fed” denotes the number of genes in
each category that were analysed by RNAi. “Possible to detect” denotes the
number of genes that have a loss-of-function phenotype that would have
been detectable in our screen. "RNAi phenotype detected” gives the
number of genes for which a phenotype was identified. “Published
phenotype detected” gives the number of genes for which the RNAI
phenotype matched a published phenotype. Supplementary Table 2 gives
full data. RNAI could reduce both maternal gene activity in the PO and
zygotic gene activity in the F1; this could explain some of the differences

between RNAI phenotypes and published phenotypes.
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Table 3 Partial list of RNAi phenotypes of genes on Chromosome |. RNAI
phenotypes are shown for genes in the following functional classes:
Chromosome dynamics and cell cycle; Cell structure; Specific transcription;
and Signal transduction. For each gene, the following data are shown: the
Research Genetics GenePairs name; whether a number of paralogues
might be targeted (asterisk in column 2; methods gives criterion); the
corresponding genetic locus name if it exists; a short description of gene
function; the RNAi phenotype in which embryonic lethality (Emb), fecundity
(Ste), post-embryonic phenotypes (P1-3) and developmental delay (Dev) are
shown separately. Emb and Ste are classified into weak (white box, black
“+") or strong (black box, white “+") phenotypes. For Emb, weak is 10-80%
embryonic lethality, strong is 90% embryonic lethal or more; weak Ste
denotes a brood size of 1 to 10, whereas strong Ste is totally sterile.

Column H shows whether there is a match (white box, black “+”) or a
homologue (black box, white “+”) in Drosophila melanogaster,
Saccharomyces cerevisiae or humans. Phenotypic abbreviations are given
in legend to Table 1. The GenePairs name does not always correspond with

the current predicted gene name since gene predictions change.

Figure 1 Conservation of genes with an RNAIi phenotype. Matches or
homologues of C. elegans genes were identified as described in the text.
Percentages of all genes (blue bars) or genes with RNAi phenotypes (red
bars) with matches or homologues in S. cerevisiae (SC), D. melanogaster
(DM), humans (HS), all three combined (ALL), or with no matches in any
organism (NO M) are shown. The significance of the differences between
the percentages of genes and the percentages of genes with RNAI
phenotypes that have homologues is p<0.001 for all cases except for

comparison to human homologues for which it is p<0.1.
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Figure 2 Distribution on Chromosome | of genes with RNAi phenotypes
and genes with ESTs. In each panel, chromosome | was analysed in 10
consecutive portions, each containing 10% of predicted genes. a) the
percentage of all genes with an RNAi phenotype that are in each portion. b)
the percentage of all predicted genes that have an EST (blue bars) or of
genes that gave an RNAI phenotype that have an EST (red bars) in each
portion. ¢) the percentage of Emb genes (black bars) or genes with viable
post-embryonic phenotypes (pink bars) in each chromosomal portion. The
boxes labelled “dup region” show the approximate location of regions

containing local duplications.

Figure 3 Functional classes of Emb, Ste, Unc and Pep genes. Predicted
products of genes that gave Ste, Emb, Unc or viable post-embryonic (Pep)
RNAIi phenotypes were placed into functional classes as described in
Methods. Genes whose products could not be accurately classified into any
of the 8 functional classes were placed into the unknown category (white).
Numbers denote the percentage of genes in each functional class; pie
charts illustrate these numbers graphically. b) Pie charts show
distributions of predicted gene products grouped as follows: basal
metabolic category (red) comprises the classes of DNA, RNA, protein and
intermediate metabolism; specialized functions (blue) comprises cell cycle
and chromosome dynamics, cell biology and cellular structure, gene
specific transcription factors and signal transduction. Worms show the
tissue affected in each phenotypic class shaded in grey. ¢) Distribution of
genes giving rise to non-viable RNAi phenotypes in C. elegans (worm) or to

non-viable phenotypes following disruption in S. cerevisiae (yeast).

Supplementary Table 1 Phenotypes arising from RNAi of genes on

Chromosome I. Genes that have a detectable RNAi phenotype are grouped
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by the functional classes shown in Fig 3. For each gene, the following data
are shown: the Research Genetics GenePairs name; whether the
sequence might target a number of paralogues (asterisk in column 2;
methods gives criterion for this); the corresponding genetic locus name if it
exists; a short description of gene function; the RNAi phenotype in which
embryonic lethality (Emb), fecundity (Ste), post-embryonic phenotypes (P1-
3) and developmental delay (Dev) are shown separately; existence of
matches (lower case) or homologues (filled box, white upper-case text) in C.
elegans (CE), Drosophila melanogaster (DM), Saccharomyces cerevisiae
(SC) or humans (HS); and whether or not the gene has an EST (E).
Abbreviations used are Ste (sterile), 1-5 (fed worm had 1-5 progeny), 6-10
(fed worm had 6-10 progeny), Stp (progeny sterile), Lvl (larval lethality), Unc
(uncoordinated), Pvl (protruding vulva), Bmd (body morphological defects),
Dpy (dumpy), Clr (clear), Him (high incidence of males), Rup (ruptured), Mit
(molt defects), Prz (paralyzed), Sma (small), Egl (egg-laying defective), Sck
(sick), Bli (blistering of cuticle), Muv (multivulva), Rol (roller), Adl (adult
lethal), Lon (long), Hya (hyperactive), Gro (slow post-embryonic growth) and
Lva (larval arrest). “Mult” indicates that the gene has multiple equal-
penetrance post-embryonic phenotypes. If the dsRNA overlaps multiple
adjacent genes of different function, these appear in the "Multiple genes”
category. The GenePairs name does not always correspond with the

current predicted gene name since gene predictions change.

Supplementary Table 2 RNAi phenotypes for previously identified loci on
Chromosome |I. Columns 1 and 2 give genes on chromosome | with
previously identified embryonic lethal or post-embryonic phenotypes and the
GenePairs primer pair that amplifies a fragment overlapping that gene,
respectively . “Mutant Phenotype” gives the published phenotype. RNAI
phenotype headings: “Emb” (percentage embryonic lethality); “Ste” (sterility);
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“P1”, “P2” and “P3” (post-embryonic phenotypes); and “Dev” (slow or
arrested growth). “Hit” indicates whether an RNAi phenotype was obtained
in the initial screen (tick), whether no mutant phenotype was obtained (“0”)
or whether a mutant phenotype was obtained in separate feeding
experiment ("*”). Phenotype abbreviations are given in the Supplementary
Figure 1 legend with the following additions: Slu (sluggish), Vul (vulvaless),
Mec (mechanosensory abnormality), Daf (dauer larva formation abnormal),
Ttx (thermotaxis abnormal), Che (chemotaxis defective). Also, the following
abbrevations are used: phen (phenotype), migr (migration), red (reduced),
wk (weak), abnl (abnormal), and dk (dark). Genes with null phenotypes that
we would have failed to detect in our screen are shaded in light grey; genes

that we failed to clone, and therefore failed to analyse, are shaded in dark

grey.

Supplementary Table 3 GenePairs on Chromosome | for which no clone

was obtained.
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Table 1 Summary of phenotypes arising from RNAi of genes on Chromosome 1

PHENOTYPE NUMBER PERCENT
All phenotypes TOTAL 339 13.9
Embryonic lethal Emb 226 9.2
Sterile Ste 82 34
Stp 14 0.6
Developmental delay Gro/Lva 145 5.9
Larval lethal Lvl 38 1.6
Post-embryonic Unc 70 29
Pvi 29 1.2
Bmd 27 1.1
Dpy 19 0.8
Clr 14 0.6
Him 13 0.5
Rup 9 0.4
Mit 8 0.3
Prz 8 0.3
Sma 6 0.2
Egl 5 0.2
Sck 5 0.2
Bli 4 0.2
Muv 2 0.1
Rol 2 0.1
Adl 1 <0.1
Lon 1 <01
Hya 1 <0.1




’.,——

Table 2 Detection of forward genetic loci on Chromosome I by RNAi.

. . RNAi Published

Genetic Possible to
Phenotype : phenotype phenotype

loci fed detect detected detected
All phenotypes 62 50 31 25
Embryonic lethal 21 21 19 16
Sterile 3 3 2 2
Sterile progeny 4 4 1 1
Developmental delay 0 0 - -
Larval lethal 4 4 1 1

Post-embryonic 43 31 14 9




Table 3 Partial list of RNAi phenotypes of genes on Chromosome I

5 o De stio 51 P2 P3 D op o De stio P1 P De
B0511.8 CDC1-like - [ -1 -1 -Tval+] [ Y34D9A_152.a vacuolarsorting | + | - |Unc| Prz| Lvi | Gro i
C37A2.4 cye-1 i{cycline + ] - |Cief -] -1 -1+ Y48G8A_3945.e adaptin subunit - - unel - | - [ - [+
C41G7.2 * kinesin +| - |Hm -] -] - & Y71A12B.a gravin-like - [DpylCIr] - | - K
C53H9.2 chrom stability -l -1 -1 -Gk Y71F9A_279.b NXT1 homol - | Pvl|Unc| - | -
F57B10.12 mei-2 |katanin homol o I I A Y71F9A_282.b coatomer subunit Uncl - | - | - I
MO1E11.6 . kinesin - |Hm| - | - |Grojg Y71F9A_290.a NTF2 homol -1 - |Pvli|Rup|Clr| - |+
RO6C7.8 Bub1-like - |Pvi{Rup/ Lvl| - |+ Y71G12A_195.¢ talin + Unc[Prz| - | - |+
T01G9.5 mei-1 |ATPase o B B B B K Y87G2A.s HuVPS28 homol -1 -lUncl - | - | - K&
W09G3.3 . RCC1 domains = -1+ Y87G2A.x protein trafficking -1 - |Unc| - | - |Grojes
Y110A7A.d cdc27 homologue - |Gro] + Y87G2A.y protein trafficking -1 - [CIr] -] -] - &S

Y39G10A_246.e MCM4-like -l -1+ ZK1014.1 vesicle fusion - | - [ -1} -

Y39G10A_246.i INCENP-like -l -1+ ZK1151.2 spectrin repeats - | - UnclBmd Stp| - K3

Y47G6A_247.0 pombe Rad2 homol -

Y52B11A.9 Kin17 homol - - K B0025.3 txnl corepressor. + ] -] - -1- |Gro+]
e C01G8.7 eyelid-like Bmd Lvi| - [Gro] +|
C01G8.5 Ezrin-like - |Gro C01G8.8 eyelid-like + 1 -1Bnd - [ -1 -1+
C10H11.1 villin -l -1+ CO1H6.5 nhr-23 [nuc horm recep. - | - func| Lvifopyl - |+
C17E4.9 PDZ domain -1 - Cc12C8.3 lin-41 |NHL domains - -l -l -t -1+
C32E8.10 unc-11 |vesicle reg LN I L I C32F10.7 nhr-2 [nuc horm recep. -l -IHm -] -1} - i+
C45G3.1 actin-binding -lUng - [ -] - i+ C48E7.3 bZIP sl -t -l -1 - |Groj+]
C47B2.3 * | tba-2 [tubulin o I B I D1081.2 SRF homol - | - {Unc[Prz| - | - {+
C53D5.a nuclear import + -] -1 -[Gro F43G9.12 TCF-9-like =l -] -] - {Grof +]
C53D5.i nuclear import - | -]1-1-|Gro F52F12.6 MYT1 homol -] -uUngl - | -] -+
DY3.2 lam-1_|nuclear lamin | - -] - F55F8.4 txnl repression - - -1 - |Lval+
EO03H4.8 * beta coatomer-like | - | + |Ung Stp; Cir| Gro F57B810.1 bZiP Sma{Dpy} - |Lva] +
FO7A5.7 unc-15|paramyosin - | - JundPrzjEgl| - K02B12.1 ceh-6 |homeobox -] - |UncIMit] - | - [+
F20G4.3 nmy-2 |[non-muscle myosin| + -1l -1t -1- MO05B5.5 hih-2 [bHLH + [Unc| PvI| - +
F21C3.5 MT nucleation + | - |UngBmd - [Gro Wo2D3.9 unc-37[groucho family Ung| - -] - |+
F26B1.3 karyopherin -l -7 -1 - wo3D8.4 pop-1 [HMG box + | - b -1 -1-1+
F26E4.8 * | tba-2 [tubulin C I S I Y40B1A.4 Zn finger - UnciBmd - [ - |+
F26H9.6 ras superfamil Lvi| - -] - YS54E5B.3 Mediatorcomplex | + | - [Rup| - | - | - [+
F28H1.2 calponin domain +4 -] =-]1-]-|Lva Y65B4A_179.b txnl activator - | - |UnciDpyl - | - [+
F30A10.6 transporter -] -1 -1-1-]Gwo 2C247.3 lin-11_|LIM homeodomain | - [ - | -} - | - [Grol+
F36H2.1 cation transporter 1 -[-1-ler ZK858.4 mel-26 [kruppel-like | . N - |
F43G9.10 microfib assoc -1 -1 -1-1Gro|l+ gna
F46F11.5 vacuolar ATPase + | - -1 - C09D1.1 unc-89 |multiple domains o
F53B8.1 * plectrins - {Ung Prz| Lvl} - C10H11.9 let-502[ROCK + ] -
F53F10.5 nucleoporin-like - -1 -] -0 -+ C26C6.2 goa-1 |G-a subunit + | +
F54C1.7 troponin ¢ - L I C32E8.5 FHA domain +
F85A12.7 UNC-101 homol - - 1Ung - | - |Gro F26E4.1 PP2A reg subunit -
F55F8.5 MT associated sl -] -t-1-1]lva F55A12.3 PI-4P 5' kinase -
F56F4.5 transporter - | - |Himf - | -] - F55C7.4 unc-73|GEF +] -
H15N14.1 human NSF-like -l -1 -1- F55C7.7 unc-73|GEF -1 -
M0O1A10.3 ribophorin LvifUng - | - |+ K04G2.8 apr-1 [APC homol - | -
R05D11.3 NTF2 homol +l-1-1-|Gro K05C4.6 hmp-2 | B-catenin -
TO3F1.9 UNC-89-like -1l -1-1- K12C11.2 SUMO-1 like -
T19B4.2 NUP153-like -l -1 -] -1+ T01G9.6 kin-10 |CKilbeta subunit + | -
T21E12.4 dhc-1_[dynein heavy chain -l -1-1-1 T21E3.1 PTPase
T25G3.2 chitin synthases + 4 - -] -4f - Gro T23D8.1 mom-5 |frizzled-like -1 -
T26E3.3 par-6 |PDZ domain -l -l -1-1- T23H2.5 rab family -1 -
W02B9.1 hmr-1 [cadherin + | - |BmdUnciDpy| - IE Y106G6E.6 Casein Kinase 1 + [ -
W04C9.1 ABC transporter I R M N K1) K Y18D10A.5 gsk-3 |GSK-3 -
Y105E8C.n gamma-adaptin [l - {Und Lvl| - iGro] + ZC581.1 NIMA-like kinase - -
Y18D10A.17 supofclathrindefic] + [ - [ - [ - [ -1 - [+ ZK265.6 G protcoup recep | - | -
Y18D10A.20 pfn-1_|profilin -l - -1L-1-
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EMBRYONIC

Locus

LETHALS

GenePairs Name

Mutant Phenotype

RNAI phenotype

P1

P2

I

Similar to
published

POST-EMB

Locus

PHENOTYPES

GenePairs Name

Mutant Phenotype

apr-1 K04G2.8 Emb - . Unc Bmd Lvi - 4 o
dhe-1 T21E12.4 Emb 100% - - - - - v/ e
ego-1 F26A3.3 Ste, Emb 50-80% - - - - Gro v/ 'l
hih-2 M05B5.5 Emb 100% 6-10 Unc Pvl - - v v
hmp-2 KO05C4.6 Emb 100% - Unc Dpy Bmd - / v
hmr-1 WO02B9.1 Emb 10% - Bmd Unc Dpy - 4 v
let-502 C10H11.9 Emb 50-80% - Dpy Rol Lvi - v/ v
mei-1 T01G9.5 Emb 100% - - - - - v 7
mel-26 ZK858.4 Emb 100% - - - - - v /
mex-3 F53G12.5 Emb 100% - - - - - d v/
mom-5 T2308.1 Emb - - Unc Bmd - - d o
nhr-2 C32F10.6 Emb - - Him - - - v o
nmy-2 F20G4.3 Emb 50-80% Ste - - - - 4 v
par-6 T26E3.3 Emb 100% - - - - - s /
pop-1 w03D8.4 Emb 100% 1-5 - - - - 4 v
rba-1 KO7A1.11 Emb 100% - Pvi Une - - 4 4
tha-2 KO07A1.12 Emb 100% - Pvl Ll - - / v
unc-37 W02D3.9 Unc, Emb, Ste 100% Ste Unc - - - v v
unc-73 F55C7.2,3,4,7 Emb, Unc, Egl, Sma, Dpy 20-40% - Egl - - . / v/
mom-4 F52F12.3 Emb - - - - - - o o
sup-17 DY3.7 Emb, Dpy, Unc - - - - - - o [+]

RNAi phenotype

P1

P2

z

Similar to
published

air-2
lin-17
lin-28
mek-2
sing-2
spe-12
spe-4
unc-54

not cloned
not cloned
not cloned
not cloned
not cloned
not cloned
not cloned
not cloned

Emb, Ste
wk Unc. Lon, wk Egl, Muv

Egl

Ste, Vul
Pvi
Ste
Ste
Unc

aex-5 F32A7.6 constipated 10% - - - - Gro d o
bli-4 KO4F10.4 Bli - - Mit Dpy Lvi - v v
dpy-14 KO2F2.2 Dpy, LvI 20-40% - Unc Lon - Lva v v
gid-1 T23G11.3 Ste 50-80% Ste - - - - v/ v/
goa-1 C26C6.2 Hya, Egl-c 10% 1-5 Une Pvi Egl - v o
lin-11 ZC247.3 Vul, wk Unc - - - - - Gro v/ o
Irp-1 F29D11.1 Sma, Dpy, Mit - . Unc Prz - Gro e o
mes-3 £54C1.3 Ste - - Stp - - - v v
nhr-23 CO1H6.5 Mit, Let, wk Emb - . Unc vl Dpy . v v/
unc-11 C32E8.10 Ung, wk thin 10% - - - - - v ]
unc-15 FO7A5.7 Une, Prz, Egl - - Unc Prz Egl - v v
unc-37 W02D3.9 Unc, Emb, Ste 100% Ste Unc - - - d 7
unc-73 F55C7.2,34,7 Emb, Unc, Egl, Sma, Dpy 20-40% - Egl - - - v/ v/
unc-89 C09D1.1 wk Ung, Clr, thin - - Unc - - - v v
egl-30 M01D7.1,7 Slu, Egl - - - - - - o [+)
fer-1 F43G9.6 Ste, lays oocytes - - - - - - [+) [+]
fog-3 C03C11.2 Ste, no sperm - - - - - - * *
gsa-1 RO6A10.2 Lvl - - - - - - o o
lin-10 CO9H6.2 Vul, Muv - - - - - - o ]
spe-11 F48C1.7 paternal-effect Emb - - - - - - [¢] [+]
spe-9 C17D12.6 Ste - - - - - - o (]
sup-17 DY3.7 Emb, Dpy, Unc - - - - - . [+] ]
sur-2 F39B82.4 Let, Vul, Egl - - - - - - M *
unc-101 K11D2.3 Unc, wk Egl - - - - - - l .
unc-13 ZK524.2 Une, Prz - - - - - - o o
unc-14 K10D3.2 Unc, Prz - - . - - - [¢] ]
unc-29 T08G11.5 SiuL1 - - - - - - o o
unc-38 F21F3.5 Slu, wk Dpy - - - - : - 0 []
unc-40 T19B4.6,7 wk Unc,wk Dpy - - - - - - [¢] [s]
unc-58 F55D12.4,6 slow Unc - - - - - - o o)
F08B6.4 Ul [¢]
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